A new method for detecting outliers in Data Envelopment Analysis
نویسندگان
چکیده
We introduce a simple method for detecting outliers in Data Envelopment Analysis. The method is based on two scalar measures. The first is the relative frequency with which an observation appears in the construction of the frontier when testing the efficiency of other observations, and the second is the cumulative weight of an observation in the construction of the frontier. We provide a link to computer programming code for implementing the procedure.
منابع مشابه
A statistical test for outlier identification in data envelopment analysis
In the use of peer group data to assess individual, typical or best practice performance, the effective detection of outliers is critical for achieving useful results. In these ‘‘deterministic’’ frontier models, statistical theory is now mostly available. This paper deals with the statistical pared sample method and its capability of detecting outliers in data envelopment analysis. In the prese...
متن کاملImpact of Outliers in Data Envelopment Analysis
This paper will examine the relationship between "Data Envelopment Analysis" and a statistical concept ``Outlier". Data envelopment analysis (DEA) is a method for estimating the relative efficiency of decision making units (DMUs) having similar tasks in a production system by multiple inputs to produce multiple outputs. An important issue in statistics is to identify the outliers. In this pap...
متن کاملدو آزمون اماری برای شناسایی نقاط پرت در اندازه گیری عملکرد ناپارامتری
In data envelopment analysis the use of peer set to assess individual or best practice performance, detecting outliers is critical for achieving accurate results. In these deterministic frontier models, statistical tests are now mostly available. This paper deals with two statistical tests for detecting outliers in data envelopment analysis. In the presented methods, each observation is deleted...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملA New Group Data Envelopment Analysis Method for Ranking Design Requirements in Quality Function Deployment
Data envelopment analysis (DEA) is an objective method for priority determination of decision making units (DMUs) with the same multiple inputs and outputs. DEA is an efficiency estimation technique, but it can be used for solving many problems of management such as rankig of DMUs. Many researchers have found similarity between DEA and MCDM techniques. One of the earliest techniques in MCDM is...
متن کامل